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Nonlinear polarization rotation(NLPR) : A
power-dependent polarization change is converted
into a power-dependent transmission through a
polarizer. NLPR converts the differential phase shift
to amplitude modulation.

stable soliton
stretched-pulse

self-similar

all-normal-dispersion pulse
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~Soliton - =

Solitons are caused by a cancellation of
nonlinearity and dispersion

work in anomalous GVD regime, sech 2 pulse
shape

For stable soliton fiber lasers the energy of a single
pulse is limited by the nonlinear phase shift induced
by the high peak power. The pulse will break into
multiple pulses when the energy rises to o.1 nJ. The
pulse can tolerate only a small nonlinear phase shift
Oy <<

Solitons are static solutions of a nonlinear wave
equation



Stretched-pulse

Analog to dispersion-managed soliton, an
alteration of positive and negative dispersion part
inside a laser cavity.

work in net GVD varies from small anomalous to
small and normal

can reach an energy level which is one order of
magnitude larger than that of stable soliton , but
small than 3n]

the pulse width is not constant and varies along
each fiber segment.

produce highly desirable Gaussian pulse shapes
and pulse spectra



Stretched-pulse

self-starting ,not wave-breaking free

SMF after Yb fiber the shorter the better, such that the
amplified pulse propagates through the minimum
length of fiber. This nonlinear effects, which impose a
major limitation on the highest energy obtainable from
fiber lasers.

Nonlinearity limit pulse energy through either of two
mechanisms: (i) Excess energy can result in wave
breaking through the combined effects of dispersion and
nonlinearity. (ii) The artificial saturable absorber (SA)
can be overdriven at high peak powers, which will lead to
multiple pulsing.




Self-similar pulse =

Self similar pulse/similariton, has a parabolic shape
and a linear frequency chirp, wave-breaking free
pulses in the propagation and convenient for
efficiency compression to fs pulses.

asymptotic solutions to the nonlinear wave equation
that governs pulse propagation.

Work in larger normal GVD compared with DM, and
normal GVD tends to ‘“linearize”  the phase
accumulated by the pulse, which increases the
spectral bandwidth but does not destabilize the
pulse. With the increasing of normal GVD, the pulse
energy increases dramatically

Pulse energy up to 10onJ has been achieved



Self-similar pulse

e Evolve to fill available gain bandwidth.
e Pulse width is at a level of tens of pico-second

Time-bandwidth product
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Dissipative solitons

Cavity only consists of elements with normal GVD. Normal
dispersion linearizes the chirp produced by self phase
modulation, generates chirped picosecond pulses, wave
breaking free pulse, can be dechirped to several hundred fs.

Mode-locking depends critically on the spectral filtering
effects, provided by gain bandwidth and filter, without it,
stable pulse trains are not generated.

By rotating the spectral filter to vary the center wavelength,
either of the sharp spectral features can be suppressed,
which may slightly improve the pulse quality. When the
spectrum changes, the magnitude of the chirp on the output
pulse can change substantially, and the pulse duration.

Pulse energy, nonlinear phase shift can be as large as 1o,
pulse energy scales up to about 50 nJ.



Dissipative solitons

The pulse duration increases monotonically in the
SMF, and then decreases abruptly in the gain fiber. In
the second segment of SMF the pulse duration
increases slightly, before dropping again owing to the
NLPR. “
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My experiments-Setup
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‘Parameters of setup

Yb -doped fiber length ~1.5m
Total SMF ~7.5m

Grating distance : ~1ocm
Free space: 133cm

Coupling rate of collimator ~55%
SMF after Yb-doped fiber is ~3m
SMF before Yb-doped fiber is ~5m
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Grating pairGﬁD\/

* GDD of the fiber: 0.023ps”2/m, assume total fiber
length ~7.5m. GDD of fiber is ~o0.17ps”2
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Oscilloscope trace

QWP1 64 deg, HWP 284deg, QWP2 205 deg
Pump current 2100mA, Output power 14.3mW
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Oscilloscope trace -
QWP1 64 deg, HWP 284deg, QWP2 205 deg

Pump current 2100mA, output power=14.3mW
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QWP1 64 deg, HWP 255deg, QWP2 205 deg

Pump current 2068mA, outpower 20mW
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Pump current 2100mA;-outpower—"
21mW
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Oscilloscope trace and.optical speetra
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Pump current 2200mA, outpower 24.5mW



Oscilloscope trace -

Pump current 2400mA, output power=26.4mW
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F spectrum

* Freq: 20.6MHz
e Signal: -17dBm,

o> D .
Input Att.: 30dB
Frame Time: ---
RBW: 20kHz

* Noise:-7o0dBm =

~75.769dBm (-118.779dBm/Hz)
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Discussion

self-starting , produce highly desirable Gaussian pulse
shapes and pulse spectra

Work in the stretched-pulse regime, with a small net
normal GVD, broad spectrum bandwidth

The output pulse characters at PBS are determined
by wave plates’ positions and pump current

stable output pulse energy ~1nJ, maximum output
power ~4omW, freq~20MHz, Epulse~2n]
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Pulse duration measure: Intensity interference auto- D
correlator and FR-103XL Auto-correlator

FR-103XL Auto-correlator : repetitive linear delay
generation in one arm of the Michelson arrangement
is introduced by a pair of parallel (//) mirrors centered
about a rotating axis

Fail to measure the pulse p

duration of fiber laser---SHG is t .
small.

Difficult to increase the output
power because the SMF after
Yb-doped fiber is too long

VW
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Oscilloscope trace for pulse-breaking
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Excess energy result in wave breaking through the
combined effects of dispersion and nonlinearity.
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Increase pump current

Pump current 270omA, QWP1=260, HWP=320, QWP1=205,
outpower=5omW
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Increase pump ¢

Pump current 270o0mA, QWP1=260, HWP=330, QWP1=205, outpower=6omW
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Pump current 2700mA, QWP1=260, HWP=298,
QWP1=205, outpower=100mW
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Unequal pulse intensity

With the increasing of output power, the amplitude of
the pulses become unequal.

spectrum bandwidth become narrower, with the
increase of output power, even with spikes

Reason: Over driving NLPR? Nonlinearity too strange?

Impossible to increase the output power in the current
setup



Drawbacks of my setup
Splice loss is still too large

The SMF after the Yb-doped fiber too long: amplified
pulse propagates through this part of SMF accumulate
a lot of nonlinearity, which impose a major limitation
on the highest energy

Yb-doped fiber too long, nonlinearity cannot be
neglected

Distance between the grating can not be tuned, for the
fixed stages

Grating reflectivity is a little lower



How to increase the out power

Change the stage of the grating to tune the distance of
the fiber

Shorten the SMF before the Yb-doped fiber, which is
the main reason for low power output.
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